
www.manaraa.com

An Overview of Codes Tailor-made for
Networked Distributed Data Storage

Anwitaman Datta, Frédérique Oggier
Nanyang Technological University, Singapore – Email: {anwitaman,frederique}@ntu.edu.sg

Abstract—The continuously increasing amount of digital data
generated by today’s society asks for better storage solutions.
This survey looks at a new generation of coding techniques de-
signed specifically for the needs of distributed networked storage
systems, trying to reach the best compromise among storage
space efficiency, fault tolerance, and maintenance overheads.
Four families of codes tailor-made for distributed settings, namely
- pyramid, hierarchical, regenerating and self-repairing codes -
are presented at a high level, emphasizing the main ideas behind
each of these codes, and discussing their pros and cons, before
concluding with a quantitative comparison among them. This
survey deliberately excluded technical details for the codes, nor
does it provide an exhaustive summary of the numerous works.
Instead, it provides an overview of the major code families in
a manner easily accessible to a broad audience, by presenting
the big picture of advances in coding techniques for distributed
storage solutions.
Keywords: coding techniques, distributed networked storage
systems, hierarchical codes, pyramid codes, regenerating codes,
self-repairing codes.

I. INTRODUCTION

Similarly to the role granaries played in the march of
agricultural civilizations of yore, massive data stores form a
cornerstone in today’s knowledge based societies, apart being
a key enabler of the cloud paradigm. The volume of data to be
stored is huge, and increasing rapidly. As of June 2011, a study
sponsored by the information storage company EMC estimates
that the world’s data is more than doubling every 2 years,
growing faster than Moore’s Law, and reaching 1.8 zettabytes
of data to be stored in 2011.1 This involves various kinds of
digital data continuously being generated by individuals as
well as business and government organizations, who all need
scalable solutions to store such data reliably and securely over
time. Quoting the EMC study, next decade will see enterprises
managing 50× more data, and handling 75× more files.

A very basic yet critical concern in storage systems is
ensuring that the data is not irrevocably lost due to device
failures. Redundancy is key to ensure fault tolerance, which
can be achieved using replication, i.e., storing multiple copies
of the same data. For instance, a common practice is to keep
at least three copies of the data (called three way replication),
the rationale being that if, or rather, when, one copy of the data
is lost, the second copy is used to regenerate the first one, and
hopefully, not both the two other copies are lost before repair
is completed. There is of course a price to pay: redundancy
naturally reduces the efficiency, or alternatively put, increases
the overheads of the storage infrastructure.

1http://www.emc.com/about/news/press/2011/20110628-01.htm

Imagine if one could come up with a way to store the
same amount of data, reliably, but using only half the needed
storage space. That would imply a reduction of the storage
infrastructure by half. The cost for such infrastructure should
be estimated not only in terms of the raw cents per gigabyte
metric, but also in terms of the physical space needed - the
corresponding cost of real estate, as well as construction,
operational and maintenance costs of the data center. The
numbers can in fact be staggering, as we move towards a world
witnessing data centers which equal medium sized cities in
terms of power consumption. A US Environmental Protection
Agency report of 20072 indicates that the US used 61 billion
kilowatt-hours of power for data centers and servers in 2006.
That is 1.5 percent of all US electricity use, and it cost the
companies that paid those bills more than $4.5 billion. Such
observations have led to a wide-scale realization of the energy
and environmental implications of large-scale data centers, and
consequent efforts to build ‘carbon neutral data centers’.

There are different ways one could imagine reducing the
storage space, starting from the physical media, which has
witnessed a continuous shrinking of physical space per unit of
data. This article questions storage space at a different layer,
that of the trade-of between fault tolerance, and the level of
efficiency in storage space utilization in large scale distributed
data storage systems.

The tension between more fault tolerance versus less storage
overhead is well felt through the evolution of RAID (redundant
array of inexpensive/independent disks). RAID is a technology
that enables storage virtualization by distributing data across
multiple disk drives that act as a logical unit, which has
now been used for over two decades. The first RAID system,
RAID 0, offered good performance and additional storage
by exactly storing data across multiple drives, so that the
disk head can read more data in a single move, a technique
referred to as striping. Its main drawback was that it had
no fault tolerance, and a single disk failure could cause the
loss of the entire stored data. This was remedied in RAID
1, where replication (mirroring) was introduced, but at the
cost of storage overhead. The subsequent RAID 2,3,4 and
5 exchanged replication against coding, by opting for parity
bits, possibly the simplest coding technique, also known as
Hamming parity codes: a parity bit is just the sum of all bits
across one drive. This allowed to retrieve the stored data, even

2http://arstechnica.com/old/content/2007/08/epa-power-usage-in-data-
centers-could-double-by-2011.ars

ar
X

iv
:1

10
9.

23
17

v1
  [

cs
.D

C
] 

 1
1 

Se
p 

20
11

http://www.emc.com/about/news/press/2011/20110628-01.htm


www.manaraa.com

in the event of a failure. While the original RAID was designed
with stand alone computer systems in mind, dRAID -d stands
for distributed- has since been widely adopted in networked
storage systems, including in storage area networks. The need
for more storage capacity has however pushed for more storage
capacity per disk, more disks per system, and consequently the
use of cheaper (less reliable) disks, resulting in the demand
for more fault tolerance and thus in a new quest for better
coding techniques for (d)RAID, ideally as ”simple” as parity
codes, but at the same time capable of tolerating more failures.
A notable example of codes proposed to suit the peculiarites
of (d)RAID systems is the family of weaver codes [3], which
can deal with up to 4 faults.

Finding codes offering the best trade-off between amount
of redundancy and fault tolerance is no new question to a
coding theorist. In communication theory, data is sent over
a noisy channel, and coding is used to append redundancy
to the transmitted signal, to help the receiver recover the
intended message, even when alterated by noise, possibly
erasures. The length of the data, or information symbols, is
usually denoted by k, and n − k symbols of redundancy are
computed to obtain a codeword of length n. The amount
of information k that a code can carry and its correction
capability are linked, and this dependency is characterized
by the so-called Singleton bound. The best EC(n, k) codes,
meeting the bound, are called maximum distance separable
(MDS) codes. The celebrated Reed-Solomon codes [9] are an
instance of such codes. MDS erasure codes, which are capable
of recovering erased information symbols, can handle up to
n− k erasures (see Figure 1).

Fig. 1. Coding for erasure channels: a message of k symbols is encoded into
a codeword of length n, before being sent over an erasure channel. As long
as not more than n−k symbols are lost (erased), the receiver can decode the
message.

Now armed with MDS codes, it seems at first clear how to
upgrade RAID: replace the Hamming code by a more powerful
MDS code, thus immediately guaranteeing the best possible
fault tolerance at the lowest cost. Things are however not that
straightforward: because erasure codes have been designed
and optimized to deal with lossy communication channels,
their sole objective is to recover a transmitted message at
the receiver. There is no notion of reliability over time,
placement of the data, or read/write operations to optimize.

Furthermore, the complexity of the mathematical operations
involved, for example in Reed-Solomon codes, necessitates
dedicated hardware, making these codes not suitable for RAID
systems.

There is one example of storage application where MDS
codes have been successfully used though, providing orders
of magnitude more efficiency/reliability: that of the CD/DVD.
When there is a scratch on a CD, the information stored
in those portions are lost (erasures), but depending on the
degree of such losses, the disc can still be read, thanks to the
incorporation of Reed-Solomon codes. That is the exception
that proves the rule.

II. NETWORKED DISTRIBUTED STORAGE SYSTEMS

MDS codes have also been considered in the context of
networked distributed storage settings. If some storage nodes
fail, or become inaccessible, e.g., due to communication faults
or power outage, the data should remain available. By consid-
ering a node failure as an erasure, the data can be encoded
with an erasure code, which will then provide fault tolerance,
in that the stored data can be retrieved even in the presence of
faulty nodes, as long as the number of failures does not exceed
the capability of the code. Such fault tolerance is achieved
using a much smaller overhead than three way replication.
Alternatively put, for same storage overhead, a much higher
level of fault-tolerance can be achieved. For instance, if the
probability of individual storage devices to fail is 0.1, then
with the use of a (9, 3) MDS erasure code, the probability of
losing the data is roughly 3∗10−6, but if three way replication
scheme is used instead, the probability of losing the data will
be as high as 10−3.

There is however a fundamental difference between a CD or
a communication channel on the one hand, and a networked
storage system on the other hand. Unlike in the CD, where
a scratch cannot be removed, or in a communication channel
where the receiver just has to deal with what it receives, in
a networked storage system, the failed storage nodes can be
replaced with new ones, and in fact this maintenance process
is essential for durability and availability of the data in the
long run. Specifically, the loss of redundancy needs to be
replenished, by recreating new redundancy at other existing
or new storage devices in the system. Such ability to replace
failed storage devices, and regenerate lost redundancy enables
the deployment of a reliable storage system comprising many
storage nodes, and thus scaling to extremely large volumes
of data - it also makes regeneration of lost data imperative.
As already mentioned above, MDS erasure codes were not
designed to address reliability over time, in particular they
were not made to address maintenance/repair issues. When a
data block encoded by an MDS erasure code is lost and needs
to be recreated, one would first need data equivalent in amount
to recreate the whole object in one place (either by storing a
full copy of the data, or else by downloading an adequate
number of encoded blocks), even in order to recreate a single
encoded block, as illustrated on Figure 2.



www.manaraa.com

(a) Data retrieval: as long as d ≥ k nodes are alive, the object can be
retrieved.

(b) Node repair: one node has to recover the object, re-encode it, and then
distributed the lost blocks to the new nodes.

Fig. 2. Erasure coding for distributed networked storage: the object to be stored is cut into k, then encoded into n fragments, given to different storage
nodes. Reconstruction of the data is shown on the left, while repair of node failures is illustrated on the right.

The particularly good behavior exhibited by MDS erasure
codes with respect to storage overhead vs. fault-tolerance
trade-off has remained appealing over time, encouraged by the
CD success story, and on-going efforts have been witnessed,
to retain their benefits while mitigating their drawbacks, such
as lack of repair mechanism and complexity. Companies
such as CleverSafe3 and Wuala4 claim to use Reed-Solomon
like codes. Within the academic circle, erasure codes have
been intensively studied in the peer-to-peer storage systems
related research, and have regained interest within the coding
community, which has started to take on the challenges offered
by storage systems.

These challenges can tentatively be summarized as follows:
design erasure codes which carry out repair efficiently, in
terms of (i) bandwidth, which is a very scarce resource
in data-center networks, (ii) computation and energy costs,
but also (iii) repair time, since delay in the repair process
may leave the system vulnerable to further faults leading to
irretrievable loss of data. This is besides spelling out many
of the system issues, such as placement of the data, number
of disk accesses, management of the meta-information to
coordinate the network, etc.

With respect to the repair process, there are arguably two
extreme points possible in the design-space of codes tailor-
made for distributed networked storage:

(i) Minimize the absolute amount of data transfer needed to
recreate the lost data from one node. Regenerating codes [1]
form a new family of codes achieving the minimum possible
repair bandwidth (per repair) given an amount of storage
per node, where the optimal storage-bandwidth trade-off is
determined using a network coding inspired analysis, assuming
that each new coming node contacts at least k live nodes
for each repair. Regenerating codes, like MDS erasure codes,
allow data retrievability from any arbitrary set of k nodes.

3http://www.cleversafe.com/
4http://www.wuala.com/

Collaborative regenerating codes [10], [5] are a generalization
allowing to deal with multiple faults. Actual explicit construc-
tions of regenerating codes are currently sparse (see [11] for
an example of non-collaborative codes at the two extremes of
the trade-off curve).

(ii) Minimize the number of nodes to be contacted for
repairing one node failure. Recently proposed self-repairing
codes [7] achieve this optimal, by allowing one repair while
contacting only two nodes, as long as less than half of
the nodes have failed. This is also true for multiple faults,
assuming a proper repair scheduling. This is at the price
of sacrificing the MDS property, though a static resilience
analysis of self-repairing codes has shown that object retrieval
is little impaired by the loss of the MDS property. It might be
worth noting that other codes, such as weaver codes [3], or
some instances of pyramid codes [4] which will be discussed
below have also traded the MDS property for better repair.
As will be emphasized again later on, being able to repair
by contacting less than k nodes and the MDS property are
mutually exclusive, and code and system designers need to
choose one or the other.

There are several other codes which fall somewhere ‘in
between’ these extremes, and have been tailor-made with
networked distributed storage applications in mind. Prominent
among these are hierarchical and pyramid codes, that we will
summarize first, before taking closer look at regenerating and
self-repairing codes.

III. PYRAMID AND HIERARCHICAL CODES

In order to alleviate the drawbacks of erasure codes with
respect to applications to storage systems, iterated erasure
code constructions have been proposed (pyramid codes [4]
and independently, hierarchical codes [2]), where subgroups
of the code itself are essentially basic erasure codes. We note
here that the specific instances discussed in [4] and [2] are
slightly different, however, since the underlying principle is



www.manaraa.com

analogous, we present them as such. Figure 3 illustrates the
basic ideas, which we summarize next.

Consider first a data object of size s · k′, partitioned into
s subgroups, each comprising k′ of the unencoded blocks.
An EC(n′, k′) code is used to generate n′ − k′ local re-
dundancy blocks within each such subgroup. A further r′

global redundancy blocks are generated using all the s · k′
unencoded blocks, and some coding scheme. Thus, a code
group is formed, which effectively is a code mapping s · k′
unencoded blocks into s · n′ + r′ encoded blocks.

Note that the local redundancy blocks can be used to repair
any losses within a subgroup - thus requiring to access a
number of blocks (much) less than the equivalent to recreate
the whole object, while the global redundancy blocks provide
further protection if there are ‘too many’ failures within a
single subgroup.

If the data object is instead of size g · s · k′, then the basic
code group working on objects of size s·k′ as described above
can be repeated, to build another level of the hierarchy - and
further ‘global redundant’ blocks can be created using all the
original g ·s ·k′ blocks. This process can in fact be iterated for
a multi-hierarchical or pyramid code, as the names suggest. At
each level of such a hierarchy, there is some ‘local redundancy’
which can repair lost blocks without accessing blocks outside
the subgroup, while if there are too many errors within a
subgroup, then the ‘global redundancy’ at that level will be
used - if even that is not adequate to carry out the repairs,
then one will need to move further up the pyramid, and so on.

Fig. 3. Pyramid codes

With respect to two design criteria that we chose to investi-
gate, namely repair bandwidth and number of nodes contacted
for repair, it is clear that an advantage of both pyramid and
hierarchical codes is the reduction in the number of nodes
that need to be contacted (and consequently, a reduction in
bandwidth usage) to recreate a lost encoded block, though no
optimality can be claimed, neither w.r.to the nodes contacted
nor bandwidth used. The (possibly) biggest disadvantage is
the lack of symmetry in the structure, meaning that some

encoded blocks are more or less important than others, which
makes it difficult if not impossible to do a thorough resilience
analysis (affecting the understanding of the code effective-
ness). Furthermore, more complicated algorithms (either for
reconstruction or repair) and system design to utilize the
codes in practice are thus required. Note that contrarily to
hierarchical codes, which were intended to improve repair in
distributed networked storage systems, pyramid codes were
meant to improve read performance, by trading storage space
efficiency for access efficiency (in particular, some instances
of pyramid codes are not MDS).

Coinciding these works, researchers from the network cod-
ing community started to study the fundamental limits and
trade-offs of bandwidth usage for regeneration of a lost en-
coded block vis-a-vis the storage overhead, subject to the MDS
constraint. This initiative has culminated in a new family of
codes, broadly known as regenerating codes, which we discuss
next.

IV. REGENERATING CODES

The repair of lost redundancy in a storage system can
be abstracted as an information flow graph [1] as follows.
Initially, the data object to be stored is processed and divided
in smaller encoded blocks to be stored across n storage nodes,
such that obtaining any k of these n encoded blocks would
suffice to recreate the original data (this is essentially the MDS
property). When some storage nodes fail, the corresponding
stored data is lost. New nodes, at which some new information
will then need to be regenerated, will contact the existing live
nodes to do so. Over time, many of the original nodes may
become unavailable, and these existing live nodes themselves
may be nodes which had joined subsequently and had carried
out regeneration themselves. Thus, the regeneration process
essentially needs to ensure two things: (i) independently of
the sequence of failures, the regeneration is done in a man-
ner, which allows further future regenerations while always
guaranteeing that (ii) any of the k live nodes possess enough
information among them to permit reconstruction of the orig-
inal data object.

Consider that each storage node stores α amount of data.
Consider also that when a node fails, the new node contacts
d > k live nodes and downloads β amount of data from each
contacted node. We will call d the fan-in for regeneration.
Each storage node Xi can be modeled as two logical nodes
Xi

in and Xi
out, which are connected with a directed edge

Xi
in → Xi

out with a weight α representing the storage capacity
of the node. The regeneration process is modeled with directed
edges of weight β from the Xout nodes of contacted live
nodes to the Xin node of the new node at which the lost
data is being regenerated. The original placement of the data
distributed over n nodes can similarly be modeled as directed
edges of weight α from the source (data owner) to the original
storage nodes. Finally, the data reconstruction problem can be
abstracted with edges of weight α to represent the destination
(data accessor) downloading data from arbitrary k live storage
nodes. Note that the edges from source, and to destination



www.manaraa.com

could also be modeled with edges with larger capacities (e.g.,
∞), but it does not matter - since the maximum meaningful
information that is transferred over such links correspond to
the storage capacity. Figure 4(a) depicts an abstraction for the
information flow graph, where each storage node is modeled
as two virtual nodes, namely Xin which collects β amount of
information from arbitrary d live nodes in the system, while
storing a maximum of α amount of information at Xout, which
is accessed by any data collector contacting the storage node.
Then, the maximum information that can flow from the source
to the destination is determined by the max-flow over a min-
cut of this graph. For the original data to be reconstructible at
the destination, this flow needs to be at least as large as the
size of the original object.

(a) Regeneration process for one failed node using network coding princi-
ples: A max-flow min-cut analysis yields the feasible values for storage
capacity α and amount of information obtained from each live node
contacted β in terms of the number of nodes contacted d and code
parameters n, k, where d ≥ k.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Repair cost (γ)

S
to

ra
ge

 (
α)

Benefit of collaboration: Storage−Bandwidth tradeoff

t=1
t=4
t=8

(b) Based on the max-flow min-cut analysis, one can determine the
trade-off curve for the amount of storage space α used per node in the
system, and the amount of bandwidth γ needed to regenerate a lost
node. If multiple repairs (t) are carried out simultaneously, and the t
new nodes at which lost redundancy is being created collaborate among
themselves, then better trade-offs can be realized, as can be observed
from the plot.

Fig. 4. The underlying network coding theory inspiring regenerating codes

A code which enables the information flow to be actually
equal to the object size has been called a regenerating code.
Now, given a regenerating code, the natural question to be
addressed is, what are the minimal storage capacity α and

bandwidth β needed for repair, as a function of the object
size, and parameters k, n, and d?. This can be formulated
as a linear non-convex optimization problem: minimize the
total download bandwidth dβ, subject to the constraint that the
information flow equals the object size. The optimal solution
is a piecewise linear function, which describes a trade-off
between the storage capacity α and the bandwidth β as shown
in Figure 4(b), and has two distinguished boundary points: the
minimal storage repair (MSR) point (when α is equal to the
object size divided by k), and the minimal bandwidth repair
(MBR) point.

Note that the trade-off analysis only determines what can
best be achieved, but in itself does not provide any specific
code achieving the same, though the fact that any k nodes must
provide enough redundancy for object reconstruction in itself
already implies that a regenerating code includes an underlying
MDS code. Several codes have since been proposed - most of
which operate either at the MSR or MBR points of the trade-
off curve. We do not provide an exhaustive list, but summarize
the two main classes of regenerating codes instead, each of
them illustrated by an example.

The max-flow min-cut argument determines the amount of
data that needs to be transferred in order to regenerate data at
a new node, where the regenerated data provides equivalent
redundancy to what was provided by the lost data. There is
however no constraint or need to regenerate precisely the
same (bit wise) data as was lost (see Figure 5 (a)). This
observation has been leveraged to propose what is known as
functional regeneration - where the regenerated data is in fact
not the same as that lost, but nevertheless provides equivalent
redundancy. In contrast, if the regenerated data is bit wise
identical to what was lost, then it is called exact regeneration.
Exact regeneration is illustrated on Figure 5 (b).

The original analysis was based on the assumption that
individual repairs are done independently, or in other words,
that regenerating codes are designed to repair one failure. The
analysis has since been generalized [5], [10] to show that in
case of multiple faults, the new nodes carrying out regenera-
tions can furthermore collaborate among themselves to further
reduce the overall bandwidth needed per regeneration (Figure
4(b)). Instances of codes for this setting are even sparser than
for classical regenerating codes, and up to now, the only code
construction proposed incurs a repair bandwidth cost equal to
that of erasure codes under lazy repair [10], but distributes
the repair load. Optimal code constructions which meet the
trade-off curve remains an open issue.

Regenerating codes promise the optimal usage of bandwidth
per repair (subject to MDS property of the codes). Some of
the proposed codes apply network coding on top of traditional
erasure codes and benefit from the mature decoding algorithms
for erasure codes. Furthermore, the notion of functional repair
provides greater flexibility in code design choices. However,
the information flow analysis itself does not suggest any code
construction, and the subsequent codes proposed so far are
rather restrictive - for example, some works only deal with a
single fault, and need to contact all the other n−1 nodes. The



www.manaraa.com

(a) An example of functional repair for k = 2 and n = 4, adapted from
[1]: an object is cut into 4 pieces o1, . . . ,o4, and two linear combinations
of them are stored at each node. When the 4th node is failing, a new node
downloads linear combinations of the two pieces at each node (the number on
each edge describes what is the factor that multiplies the encoded fragment),
from which it computes two new pieces of data, different from that lost, but
any k = 2 of the 4 nodes permit object retrieval.

(b) An example of exact repair from [11]: an object o is encoded by taking its
inner product with 10 vectors v1, . . . ,v10, to obtain oTvi, i = 1, . . . , 10, as
encoded fragments. They are distributed to the 5 nodes N1, . . . , N5 as shown.
Say, node N2 fails. A newcomer can regenerate by contacting every node left
(shown by the edges), and download one encoded piece from each of them,
namely oTv1 from N1, oTv5 from N3, oTv6 from N4 and oTv7 from
N5.

Fig. 5. Regenerating codes: functional versus exact repair.

value of fan-in d for regeneration has practical implications.
Lower fan-in is good, because there are then more alternative
choices that can be made, particularly avoiding bottlenecks,
and possibly accomplishing repairs in parallel. Furthermore,
the algorithmic and system design complexity of using net-
work coding is much larger than even traditional erasure codes,
apart the added computational overheads.

V. SELF-REPAIRING CODES

We mentioned that regenerating codes implicitly include an
MDS code, and assume that the number of contacted live
nodes d is bigger than k. We would like to emphasize that
relaxing the constraint d ≥ k to allow d < k necessarily
implies the loss of the MDS property. Indeed, if a node can
be repaired with d < k other nodes, this means that there
exists a linear dependency5 among less than k fragments, so
that if the data accessor were to contact k nodes including
those d + 1 linearly dependent ones, he could not recover

5Only linear codes are considered.

(a) An example of self-repairing codes from [8]: The object o is
split into four pieces, and xor-ed combinations of these pieces are
generated. The specific combinations (represented using the basis
vectors) to be used is determined based on projective geometric
principles. Two such pieces are stored at each node, over a group of
five nodes, so that contacting any two nodes is adequate to reconstruct
the original object. Furthermore, systematic pieces are available in
the system, which can be downloaded and just appended together to
reconstruct the original data. If a node fails, say, N5, then the lost
data can be reconstructed by contacting a subset of live nodes. Two
different strategies, with different fan-ins d = 2 and d = 3, and
correspondingly different total bandwidth usage, have been shown to
demonstrate some of the flexibilities of the regeneration process.

(b) An example of self-repairing codes from [7]: the object o has length 12,
and encoding is done by taking linear combinations of the 12 pieces as shown,
which are then stored at 7 nodes. If the 7th node fails, it can be reconstructed
in 3 different ways, by contacting either N1, N5, or N2, N6, or N3, N4. If
both the 6th and 7th node fail, each of them can still be reconstructed in two
different ways, so that for example, a first newcomer can contact first N1 then
N5 to repair N7, while the second comer can in parallel contact first N3 then
N1 to repair N6.

Fig. 6. Self-repairing codes



www.manaraa.com

the encoded object. To the contrary of regenerating codes,
self-repairing codes [7] work in a regime where d << k,
in particular d can take most of the time the minimal value
of d = 2. We note that d = 1 is possible only when using
replication/repetition code. As just explained, self-repairing
codes are not MDS codes, given that they achieve regeneration
using d < k. To evaluate the loss of the MDS property, a
static resilience analysis is provided, which for distributed
systems, refers to the probability that an object, once stored in
the system, will continue to stay available without any further
maintenance, even when some individual member nodes of the
distributed system become unavailable. The static resilience
analysis reveals that there is little difference with MDS codes,
especially when the node availability is large (this will be
further discussed in next section).

Self-repairing codes however mimic the MDS property in
the repair domain instead, namely, they satisfy that repair
(of single or multiple faults) can be performed by contacting
a fixed number of live nodes, this number depending only
on the number of faults, and not on which specific encoded
fragment is missing. Note that this is in contrast to pyramid
and hierarchical codes. Thus, one may say, self-repairing codes
try to combine the good properties of both pyramid codes
as well as regenerating codes. Two instances of self-repairing
codes are known up to date [7], [8].

That repair can be done by contacting d = 2 nodes has
the advantage of allowing fast repair, which can be further
sped up thanks to parallel repair of multiple faults: since each
newcomer may monopolize up to 2 live nodes depending on
resource constraints, there is room for several pairs of live
nodes to upload repair data at the same time (see Figure 6(a)
for an example). Notice that the optimal storage-bandwidth
trade-off of regenerating codes does not apply here, since the
constraint d > k is relaxed, thus better trade-off points in
terms of total bandwidth usage can also be achieved.

VI. QUANTITATIVE COMPARISON

Self-repairing codes, pyramid and hierarchical codes sacri-
fice the MDS property in order to achieve regeneration using
d < k live nodes. Due to the inherent asymmetry of the
role of different encoded pieces in hierarchical and pyramid
codes, there is no rigorous analysis to quantify this sacrifice.
The trade-offs for homomorphic self-repairing codes have
been explicitly determined, and are presented in Figures 7(a)
and 7(b). For MDS codes, the possibility to reconstruct the
original object by using data stored in any random x storage
nodes is binary, it is always possible to reconstruct the data
if any k or more storage nodes are used. In contrast, for
self-repairing codes, this is probabilistic, as can be observed
from the corresponding values of ρx shown in 7(a). A natural
question to ask is then, if multiple nodes fail and no repairs
are carried out, then what is the probability that the data
still remains available in the system, i.e., what is the static
resilience of the system? Specifically, if only pnode fraction
out of the n storage nodes are actually available and the
failures have happened uniformly randomly, then what is the

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

ρ x

Conditional probability of reconstruction

HSRC(31,5)
EC(31,5)

(a) Comparison of the probability of reconstruction of object using encoded
data in x random storage nodes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
node

p ob
j

EC(63,5)
SRC(63,5)
EC(31,5)
SRC(31,5)

(b) Static resilience of homomorphic self-repairing codes

8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

x
th

re
pa

ir 
tr

af
fic

 p
er

 lo
st

 b
lo

ck

n=31, k=8

γ
prl

γ
seq

γ
eclazy

γ
MSRGC

 (d=k+1)

γ
MSRGC

 (d=k+2)

(c) Average traffic normalized with B/k per lost block for various choices
of xth (B is the size of the stored object)

Fig. 7. Comparison among traditional erasure codes, regenerating codes and
self-repairing codes: static resilience analysis and storage-bandwidth trade-off



www.manaraa.com

probability that the original data is still available. Figure 7(b)
compares the static resilience of self-repairing codes with that
of MDS codes (which includes traditional erasure codes as
well as regenerating codes), and we observe that while there
is some deterioration of the resilience, this is rather marginal.
Finally, in a real system, one would not allow failures to
accumulate indefinitely, and instead a regeneration process will
have to be carried out. If this regeneration is triggered when
precisely xth out of the n storage nodes are still available,
then, the total data transfer needed to regenerate data for
each of the n − xth failed nodes is depicted in Figure 7(c).
For self-repairing codes, the repairs can be done in sequence
or in parallel, denoted using suffices seq and prl, and this
is compared with traditional erasure codes (denoted using
eclazy) when the repairs are done in sequence6 as well as
with RGC codes at MSR point (corresponding to equivalent
α = B/k where B is the object size) for few choices of
d. The bandwidth need has been normalized with the size
of one encoded fragment, i.e., B/k. We notice that for up
to a certain point, self-repairing codes have the least (and
a constant of 2) bandwidth need for regeneration, and this
is even when the regenerations are carried out in parallel.
For larger number of faults, the absolute bandwidth usage
for traditional erasure codes and regenerating codes is lower
than that of self-repairing codes. However, given that erasure
codes need to contact k nodes and regenerating codes need
to contact d ≥ k nodes, some preliminary empirical studies
have shown the regeneration process for such codes to be
slow [6], which can in turn make the system vulnerable.
In contrast, self-repairing codes, because of an extremely
small fan-in d = 2 can support fast and parallel repairs [7]
while dealing with a much larger number of simultaneous
faults. A more thorough and comparative evaluation of how
these various codes perform under realistic circumstances, for
instance, taking into account topology connecting the storage
nodes, placement strategies, multiple objects, etc. is an open
question that the research community is currently engaged in
investigating.

VII. CONCLUDING REMARKS

There has been a long running effort to apply codes for
storage systems, and this includes use of traditional erasure
codes, as well as other codes such as low density parity
check codes (LDPC) coming from communication theory,
rateless (digital fountain) codes originally designed for content
distribution centric applications, or locally decodable codes,
emerging from the theoretical computer science community,
to cite a few. The long believed mantra has been ‘the storage
device is the erasure channel’.

Such a simplification ignores various nuances of distributed
networked storage systems, particularly with respect to the
maintenance process and long term reliability. This realization
has led to a renewed interest in designing codes tailor-made

6For parallel repairs using erasure codes, the traffic is k = 8, and has not
been shown in the figure.

for distributed storage. This article surveys the major families
of such novel codes, but does so at a very high level, to make
the innovations accessible to a broad range of audience, while
also serving as a one-stop starting point for anyone interested
in delving deeper.

To conclude, it needs to be noted, that other techniques for
data reliability and efficient storage maintenance are also being
heavily investigated in the space of storage technology, for
instance, snapshots, deduplication, etc. to name a few. How
these aspects will be affected if, or, arguably when coding
techniques become mainstream for large scale data-storage,
are fascinating open questions for the storage technology
community in general, and conversely, coding theorists also
need to take into account these additional nuances when
designing storage centric codes.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K. Ram-
chandran, ”Network Coding for Distributed Storage Systems” IEEE
Transactions on Information Theory, Vol. 56, Issue 9, Sept. 2010.

[2] A. Duminuco, E. Biersack, “Hierarchical Codes: How to Make Erasure
Codes Attractive for Peer-to-Peer Storage Systems” , Eighth Interna-
tional Conference on In Peer-to-Peer Computing , 2008. P2P ’08.

[3] J. L. Hafner, ”WEAVER codes: highly fault tolerant erasure codes for
storage systems”, 4th conference on USENIX Conference on File and
Storage Technologies, FAST’05.

[4] C. Huang, M. Chen, and J. Li, “Pyramid Codes: Flexible Schemes to
Trade Space for Access Efficiency in Reliable Data Storage Systems”,
Sixth IEEE International Symposium on Network Computing and Appli-
cations, 2007. NCA 2007.

[5] A.-M. Kermarrec, N. Le Scouarnec, G. Straub, “Repairing Multiple
Failures with Coordinated and Adaptive Regenerating Codes”, in the
proceedings of the 2011 International Symposium on Network Coding
(NetCod 2011).

[6] L. Pamies-Juarez, E. Biersack, “Cost Analysis of Redundancy
Schemes for Distributed Storage Systems”, preprint, available at
http://arxiv.org/abs/1103.2662.

[7] F. Oggier, A. Datta, “Self-repairing Homomorphic Codes for Distributed
Storage Systems”, INFOCOM 2011.

[8] F. Oggier, A. Datta, “Self-Repairing Codes for Distributed Storage – A
Projective Geometric Construction”, ITW 2011.

[9] I. S. Reed, G. Solomon, “Polynomial Codes Over Certain Finite Fields”,
Journal of the Society for Industrial and Appl. Mathematics, no 2, vol
8, SIAM, 1960.

[10] K. W. Shum, “Cooperative Regenerating Codes for Distributed Storage
Systems”, to appear at ICC 2011, available at arXiv:1101.5257v1.

[11] K. V. Rashmi, N. B. Shah, P. Vijay Kumar, K. Ramchandran, “Explicit
Construction of Optimal Exact Regenerating Codes for Distributed
Storage”, Allerton 2009.

http://arxiv.org/abs/1103.2662
http://arxiv.org/abs/1101.5257

	I Introduction
	II Networked Distributed Storage Systems
	III Pyramid and Hierarchical codes
	IV Regenerating codes
	V Self-repairing codes
	VI Quantitative comparison
	VII Concluding remarks
	References

